Mechanistic simulation of normal-tissue damage in radiotherapy--implications for dose-volume analyses.

نویسندگان

  • Eva Rutkowska
  • Colin Baker
  • Alan Nahum
چکیده

A radiobiologically based 3D model of normal tissue has been developed in which complications are generated when 'irradiated'. The aim is to provide insight into the connection between dose-distribution characteristics, different organ architectures and complication rates beyond that obtainable with simple DVH-based analytical NTCP models. In this model the organ consists of a large number of functional subunits (FSUs), populated by stem cells which are killed according to the LQ model. A complication is triggered if the density of FSUs in any 'critical functioning volume' (CFV) falls below some threshold. The (fractional) CFV determines the organ architecture and can be varied continuously from small (series-like behaviour) to large (parallel-like). A key feature of the model is its ability to account for the spatial dependence of dose distributions. Simulations were carried out to investigate correlations between dose-volume parameters and the incidence of 'complications' using different pseudo-clinical dose distributions. Correlations between dose-volume parameters and outcome depended on characteristics of the dose distributions and on organ architecture. As anticipated, the mean dose and V(20) correlated most strongly with outcome for a parallel organ, and the maximum dose for a serial organ. Interestingly better correlation was obtained between the 3D computer model and the LKB model with dose distributions typical for serial organs than with those typical for parallel organs. This work links the results of dose-volume analyses to dataset characteristics typical for serial and parallel organs and it may help investigators interpret the results from clinical studies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation of lung normal tissue doses in lung tumors radiation therapy using both gated and conventional radiotherapy

Introduction: In radiation therapy of lung tumors, respiratory motion causes target moving, so a larger margin is needed to cover the clinical target volume (CTV). With the margin increasing, a larger volume of normal tissue will be exposed to high-dose.  In this study, dosimetric parameters of normal lung tissue were compared between gated and conventional radiotherapy (RT), u...

متن کامل

Comparison between artificial neural network and radiobiological modeling for prediction of thyroid gland complications of after radiotherapy

Introduction: Hypothyroidism is one of the frequent side effects of radiotherapy of head and neck cancers, breast cancer, and Hodgkin's lymphoma. It is recommended to estimate the normal tissue complication probability of thyroid gland using radiobiological modeling during treatment planning. Moreover, the use of artificial neural network is also proposed as a new method for t...

متن کامل

Calculation of absorbed dose in lung tissue equivalent and compared it with prediction of a treatment planning system using Collapsed Cone Convolution algorithm

External radiotherapy is used for treatment of various types of cancers. Due to the impossibility of measuring the absorbed dose delivered to different organs during irradiation, treatment planning systems (TPSs) have been utilized for calculation of absorbed dose before a radiotherapy procedure. Thus, the accuracy and precession of the TPS is essential.The aim of this study is investigation of...

متن کامل

Normal Tissue Complication Probability (NTCP) modeling and validation of quantitative analysis of normal tissue effects in the clinic (QUANTEC) guideline using quality of life questionnaire for parotid gland during head and neck radiotherapy

Introduction: Radiation therapy is the main treatment method for head and neck cancers, which comprise 3–5% of all cancers. A major side effect of this treatment is complication of the parotid glands, i.e. xerostomia, which occurs at relatively low doses. This complication leads to mouth dryness which is the most common problem for head and neck cancer survivors. There are dif...

متن کامل

Evaluation of Lung Dose in Esophageal Cancer Radiotherapy Using Monte Carlo Simulation

Background and purpose: Radiation therapy make an important contribution in the control and treatment of cancers. Lungs are the main organs at risk in esophageal cancer radiotherapy. Difference between the dose distribution due to the treatment planning system (TPS) and the patient's body dose is dependent on the calculation of the treatment planning system algorithm, which is more pronounced i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 55 8  شماره 

صفحات  -

تاریخ انتشار 2010